
Welcome!

Thank you for purchasing our AZ-Delivery DS1302 Real-time Clock Module.

On the following pages, you will be introduced to how to use and set-up this

handy device.

Have fun!



Table of Contents

Introduction....................................................................................................3

Specifications................................................................................................4

The pinout.....................................................................................................5

How to set-up Arduino IDE............................................................................6

How to set-up the Raspberry Pi and Python...............................................10

Connecting the module with Atmega328p...................................................11

Library for Arduino IDE................................................................................12

Sketch example.......................................................................................13

Connecting the module with Raspberry Pi..................................................22

Libraries and tools for Python..................................................................23

Python script............................................................................................24

- 2 -



Introduction

The DS1302 Real-time Clock module is  used as  a  time  synchronization

device in applications where precise timings are essential. The module is

used in digital clocks,  computer motherboards, digital cameras, embedded

systems, etc.

The module contains a real-time clock and 31B of RAM and provides clock

and calendar functions. It can provide seconds, minutes, hours, weekdays,

month days, months and years information. The module can be set to work

in 12 or 24 hour format. It has AM/PM indicator ability and it is designed to

operate with very low power consumption, less than 1µW.

The power supply for the module is in the range from 2V to 5V.

The module uses very simple synchronous serial communication otherwise

known as ThreeWire Interface. Only three wires are required for data

exchange between a microcontroller and a module. Data can be transferred

to and from the module one byte at a time or in a burst of up to 31 bytes.

 

There  is  an on-board battery  holder,  but  AZ-Delivery  does  not  ship  the

module with a battery.  Use a battery as a back-up power  supply for the

module.

- 3 -



Specifications

Power supply voltage from 2V to 5V

Operating temperature from 0  to +70℃ ℃
Communication interface SSPI [ThreeWire ]

Battery backup One battery holder without a battery!

Time of day alarms 2

Low power consumption less then 1mA

Dimensions 43 x 23 x 20mm [1.7 x 0.9 x 08in]

The  DS1302  chip  uses the external  32.768kHz crystal.  The  on-board

oscillator  circuit  does  not  require  any  external  resistors  or  capacitors  to

operate. When using a crystal with the specified characteristics, the startup

time is usually less than one second. The DS1302 module can also use the

external oscillatror, but this is not covered in this eBook.

The module has a battery holder for one  3V coin cell battery. The battery

can be used as a back-up power supply. When the main power supply is

disconnected, the automatic detection of on-board chip switches to battery

back-up.

- 4 -



The pinout

The DS1302 Real-time Clock module has five pins. The pinout is shown on

the following image:

- 5 -



How to set-up Arduino IDE

If  the Arduino  IDE is  not  installed,  follow the  link and  download  the

installation file for the operating system of choice.

For Windows users,  double click on  the downloaded  .exe file and follow

the instructions in the installation window.

- 6 -

https://www.arduino.cc/en/Main/Software


For Linux users, download a file with the extension .tar.xz, which has to

be extracted. When it is extracted, go to  the extracted directory and open

the terminal in that directory. Two .sh scripts have to be executed, the first

called arduino-linux-setup.sh and the second called install.sh.

To run  the first  script  in the terminal, open the terminal  in the extracted

directory and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of  a  superuser in  Linux operating system. A

password  for  the  superuser  has  to  be  entered  when  the  command  is

started. Wait for a few minutes for the script to complete everything.

The second script, called install.sh, has to be used after the installation

of  the first  script. Run the following command in  the terminal  (extracted

directory): sh install.sh

After  the installation  of  these  scripts, go  to  the All Apps,  where the

Arduino IDE is installed.

- 7 -



Almost  all  operating  systems  come  with  a text  editor  preinstalled  (for

example,  Windows comes  with  Notepad,  Linux Ubuntu comes  with

Gedit,  Linux Raspbian comes with  Leafpad,  etc.). All  of  these text

editors are perfectly fine for the purpose of the eBook.

Next thing is to check if your PC can detect  an Atmega328p board. Open

freshly installed Arduino IDE, and go to: 

Tools > Board > {your board name here} 

{your board name here} should be the Arduino/Genuino Uno,  as it can

be seen on the following image:

The port to which the Atmega328p board is connected has to be selected.

Go to: Tools > Port > {port name goes here} 

and when the  Atmega328p board  is connected to the USB port,  the  port

name can be seen in the drop-down menu on the previous image. 

- 8 -



If the Arduino IDE is used on Windows, port names are as follows:

For  Linux users,  for  example,  port  name is /dev/ttyUSBx,  where  x

represents integer number between 0 and 9.

- 9 -



How to set-up the Raspberry Pi and Python

For  the Raspberry Pi,  first the  operating system  has to be installed,  then

everything has to be set-up so that it can be used in the Headless mode.

The  Headless mode  enables  remote  connection to  the Raspberry  Pi,

without the need for  a PC screen Monitor, mouse  or keyboard.  The only

things that are used in this mode are the Raspberry Pi itself, power supply

and internet connection. All of this is explained minutely in the free eBook:

Raspberry Pi Quick Startup Guide 

The Raspbian operating system comes with Python preinstalled.

- 10 -

https://www.az-delivery.de/products/raspberry-pi-kostenfreies-e-book?ls=en


Connecting the module with Atmega328p

Connect  the module with  the  Atmega328p as  shown  on  the  following

connection diagram:

RTC pin Mc pin Wire color

VCC 5V Red wire

GND GND Black wire

CLK D4 Blue wire

DAT D3 Purple wire

RST D2 Green wire

- 11 -



Library for Arduino IDE

To use the module with Atmega328p, it is recommended to download an

external library. The library that is used in this eBook is called the RTC by

Makuna. To download it, open Arduino IDE and go to: 

Tools > Manage Libraries.

When the new window opens, type RTC by Makuna in the search box and

install the library made by Michael C. Miller, as shown in the following

image: 

With the library comes two sketch examples, to open one, go to:

File > Examples > RTC by Makuna > DS1302_Memory

With this  sketch the module can be tested.  The sketch on the following

page is simplified and is more user friendly version.

- 12 -



Sketch example  

#include <ThreeWire.h>

#include <RtcDS1302.h>

ThreeWire myWire(3, 4, 2); // DAT/IO, CLK/SCLK, RST/CE

RtcDS1302<ThreeWire> Rtc(myWire);

void setup ()

{

  Rtc.Begin();

  Serial.begin(9600);

  //Uncomment to write current PC time to the RTC

  RtcDateTime cdt = RtcDateTime(__DATE__, __TIME__);

  //Uncomment to enter manualy date and time to the RTC

  //RtcDateTime cdt = RtcDateTime("Jan 14 2015", "09:55:20");

  Rtc.SetDateTime(cdt);

}

void loop ()

{

  RtcDateTime pdt = Rtc.GetDateTime();

  printDateTime(pdt);

  Serial.println();

  delay(2000);

}

- 13 -



void printDateTime(const RtcDateTime& dt) {

  //Day of the week

  Serial.print("Day of the week: ");

  if (dt.DayOfWeek() == 1) {

    Serial.println("Monday");

  }

  else if (dt.DayOfWeek() == 2) {

    Serial.println("Tuesday");

  }

  else if (dt.DayOfWeek() == 3) {

    Serial.println("Wednesday");

  }

  else if (dt.DayOfWeek() == 4) {

    Serial.println("Thursday");

  }

  else if (dt.DayOfWeek() == 5) {

    Serial.println("Friday");

  }

  else if (dt.DayOfWeek() == 6) {

    Serial.println("Saturday");

  }

  else if (dt.DayOfWeek() == 7) {

    Serial.println("Sunday");

  }

  // Current Date

  Serial.print("Current Date: ");

  if (dt.Day() < 10) {

    Serial.print("0");

    Serial.print(dt.Day());

  }

  else {

    Serial.print(dt.Day());

  }

- 14 -



  //one tab

  Serial.print("/");

  if (dt.Month() < 10) {

    Serial.print("0");

    Serial.print(dt.Month());

  }

  else {

    Serial.print(dt.Month());

  }

  Serial.print("/");

  Serial.println(dt.Year());

  //Current Time

  Serial.print("Current Time: ");

  if (dt.Hour() < 10) {

    Serial.print("0");

    Serial.print(dt.Hour());

  }

  else {

    Serial.print(dt.Hour());

  }

  Serial.print(":");

  if (dt.Minute() < 10) {

    Serial.print("0");

    Serial.print(dt.Minute());

  }

  else {

    Serial.print(dt.Minute());

  }

- 15 -



  //one tab

  Serial.print(":");

  if (dt.Second() < 10) {

    Serial.print("0");

    Serial.print(dt.Second());

    Serial.println();

  }

  else {

    Serial.print(dt.Second());

    Serial.println();

  }

}

- 16 -



Upload the sketch to the Atmega328p and run the Serial Monitor (Tools >

Serial Monitor). The result should look like as on the following image:

- 17 -



At  the  beginning  of  the  sketch two  libraries  called  ThreeWire and

RtcDS1302 are imported.  These libraries contain functions that are used

for communication between the module and Atmega328p.

The  object  myWire which  represents  the  communication  interface  is

created with the following line of code: ThreeWire myWire(4, 5, 2);

where  numbers  4,  5,  and  2  represent  digital  pins  on  the  Atmega328p

through  which  the  module  is  connected.  (DATA-IN,  RST and  SCK,

respectively).

The second object called  Rtc represents the module itself.  To create it,

myWire object is used like in the following line of code:

RtcDS1302<ThreeWire> Rtc(myWire);

At the beginning of setup() function, communication between the module

and Atmega328p is started, with the following line of code: Rtc.Begin();

Then the serial interface with the baud rate of 9600bps is started.

There  are  two  ways  that  can  be  used  to  set  the  date  and  time  of  the

module. The first is to use the current system date and time and the second

is to use the custom date and time values. 

- 18 -



To set the current system date and time into the module, the following line

of code is used:

RtcDateTime cdt = RtcDateTime(__DATE__, __TIME__);

With this line of code, the object called  cdt is created, where  __DATE__

__TIME__ arguments are used. The values of these arguments represent

the current system date and time data.

To set the custom date and time values, the following line of code is used:

RtcDateTime cdt = RtcDateTime("Jan 14 2015", "09:55:20");

where the following format for date and time has to be used:

("MMM DD YYYY", "HH:MM:SS")

where: "Month DayOfMonth Year", "Hour:Minute:Second"

At the beginning of the loop() function data is read from the module after

which the data is stored into pdt object. Storing data in pdt object is done

with the following line of code: 

RtcDateTime pdt = Rtc.GetDateTime();

Then function called  printDateTime() is used to output data from the

pdt object and it will be explained later in the text.

At  the  end  of  the  loop() function,  a  delay  of  two  seconds is  set-up

(delay(2000)). This way, output in  the  Serial Monitor is updated every

two seconds.

- 19 -



The printDateTime() function has one argument and returns no value.

The argument type is RtcDateTime which represents date and time data

from the RTC. In the header of the function is the following:

const RtcDateTime& dt 

where dt is the name of the parameter (argument); & means that the data

is passed to the function by reference (what this means is not in the scope

of this eBook); const means that data is read-only.

By default, when the date and time data is displayed in the Serial Monitor,

numeric values that are less than 10 are displayed as single digit numbers

(2:23:1 – hour:minute:second).

The  original  sketch  is  modified  to  display  leading  zeros  for  single  digit

numbers.

When data is read from the  RTC module, the name of  the  weekday is a

numeric value. To display names of weekdays, the following lines of code is

used (for example, Monday):

if (dt.DayOfWeek() == 1) {

  Serial.println("Monday");

}

- 20 -



All other numeric values from data read from the RTC module are displayed

with leading zero (for example adding zero to seconds), the following lines

of code are used:

if (dt.Second() < 10) {

  Serial.print("0");

} else {

  Serial.print(dt.Second());

}

- 21 -



Connecting the module with Raspberry Pi

Connect  the module with  the  Raspberry  Pi  as  shown  on  the  following

connection diagram:

RTC pin Raspberry Pi pin Physical pin Wire color

VCC 3V3 1 Red wire

GND GND 6 Black wire

CLK GPIO17 11 Green wire

DAT GPIO27 13 Purple wire

RST GPIO22 15 Blue wire

- 22 -



Libraries and tools for Python

To use the module with the Raspberry Pi, it is recommended to download

an external  library.  In order  to download an external  library used in this

eBook, the  git app and  rpi.gpio library should be installed. To do so,

open the terminal and run the following commands, one by one:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install -y python3-rpi.gpio git

The external library used in this eBook is called rpi.rtc and to download

it open the terminal and run the following command:

git clone https://github.com/sourceperl/rpi.rtc.git

To install the library, run the following command:

sudo python3 setup.py install

The  directory  where  the  library  is  installed  contains  another  sub-folder

called scripts. There are two example scripts called ds1302_get_utc and

ds1302_set_utc.  To  use  these  script  files,  file  names  have  to  be

renamed with the *.py extension.

- 23 -



Python script

import sys

import pyRPiRTC

import time

from datetime import datetime

my_format = '%d/%m/%Y %H:%M:%S'

rtc = pyRPiRTC.DS1302(clk_pin=11, data_pin=13, ce_pin=15)

def set_date_time(time, f=my_format):

    global rtc

    dt = datetime.strptime(time, f)

    rtc.write_datetime(dt)

print('Press CTRL + C to end the script!')

try:

    # set_date_time('01/01/2020 09:13:55') # uncomment this to set date/time

    while True:

        cdt = rtc.read_datetime()

        print('Current date: {}'.format(cdt.strftime('%d/%m/%Y')))

        print('Current time: {}\n'.format(cdt.strftime('%H:%M:%S')))

        time.sleep(1)

except ValueError:

    sys.exit('error with RTC chip, check wiring')

except KeyboardInterrupt:

    print('\nScript end!')

    

finally:

    rtc.close() # clean close

- 24 -



Save  the  script  by  the  name  ds1302.py.  To  run  the  script,  open  the

terminal  in  the directory where the script  is  saved and run the following

command:

python3 ds1302.py

The result should look like as on the following image:

To stop the script press ‘CTRL + C’ on the keyboard.

- 25 -



The script starts with importing of two libraries  sys and  time, one script

pyRPiRTC and one function datetime from datetime library.

Next,  the  string  variable  called  my_format is  created.  This  variable

contains the string which represents the date and time format used in the

datetime() function.

my_format = ‘%d/%m/%Y %H:%M:%S’

What a specific letter in this string means can be read on the following link.

Slashes “/” and colons “:” are used as separators.

After this, the object called rtc is created with the following line of code:

rtc = pyRPiRTC.DS1302(clk_pin=11, data_pin=13, ce_pin=15)

where 11, 13 and 15 are the names of the GPIO pins (BCM) on which pins

of the module are connected.

Next, the function called  set_date_time() is created. The function has

two arguments  and  returns  no  value.  The first  argument  represents  the

string with a specific  date and time which is  saved in  the module.  This

argument has to be a string in the following format: 

'01/01/2020 09:13:55'

where  01/01/2020 is  day/month/year and  09:13:55 is

hour:minute:second.

- 26 -

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes


The second argument is called f and it represents the date and time format

used for  datetime() function. This argument is optional and its value is

set  by  default  to  the  value  stored  in  my_format variable.  The  second

argument is optional as it can be seen in the following line of code:

def set_date_time(time, f=my_format):

global rtc

    dt = datetime.strptime(time, f)

    rtc.write_datetime(dt)

The  set_date_time() function  sets  the  specific  date  and  time in  the

module. Use it once to set the date and time, after that only read the data

from the module.

After  this,  the try-except-finally block of  code is created with two

except parts.  At the beginning of the  try block there is one comment,

which shows how to use the set_date_time() function. Uncomment this

and set the desired date and time in order to write the date and time data

into the RTC module. After this, the indefinite loop block is created (while

True:).  In the indefinite loop block,  first,  the RTC data is read with the

following line of code: cdt = rtc.read_datetime()

where cdt object is created and the date and time data are stored in this

object. 

- 27 -



Next, the data from cdt object is displayed in the terminal

The output can be seen on the image of the script output.

The  first  except block  is  used  to  catch the ValueError.  This  error

happens if the data can not be read from the RTC module. When this error

happens,  the  message:  error with RTC chip, check wiring is

displayed in the terminal.

The second except block is used to catch the KeyboardInterrupt. The

keyboard  interrupt  happens  when  the  CTRL  +  C is  pressed  on  the

keyboard. When this happens, the message: Script end! is displayed in

the terminal.

The finally block of code is executed at the script end. When this block

of  code  is  executed,  the  function  called  close() is  executed,  which

disables all GPIO pin modes and interfaces used in the script.

- 28 -



Now it is the time to learn and make your own projects. You can do that with

the help of many example scripts and other tutorials, which can be found on

the internet.

If  you  are  looking  for  the  high  quality  microelectronics  and

accessories, AZ-Delivery Vertriebs GmbH is the right company to get

them from. You will be provided with numerous application examples,

full  installation  guides,  eBooks,  libraries  and  assistance  from  our

technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

- 29 -

https://az-delivery.de/pages/about-us
https://az-delivery.de/

	Introduction
	Specifications
	The pinout
	How to set-up Arduino IDE
	How to set-up the Raspberry Pi and Python
	Connecting the module with Atmega328p
	Library for Arduino IDE
	Sketch example

	 Connecting the module with Raspberry Pi
	Libraries and tools for Python
	Python script


